
International Journal of Engineering Science Invention Research & Development; Vol. III, Issue X, April 2017

www.ijesird.com, e-ISSN: 2349-6185

S K.NAGUR BASHA and

P.L.S NARASIMHARAO ijesird, Vol. III, Issue X, April 2017/626

ENCODING CACHE MEMORY DATA BITS FOR

REMOVAL OF SAME TAG BITS
 1SK.NAGUR BASHA,

2
P.L.S NARASIMHARAO

PG Scholar
1
, Assistant Professor

2
, Dept of ECE, DVR & Dr HS MIC College of Technology, Kanchikacherla, AP, India

ABSTRACT: Many high-performance microprocessors employ

cache write-through policy for performance improvement and at

the same time achieving good tolerance to soft errors in on chip

caches. However, write-through policy also incurs large energy

overhead due to the increased accesses to caches at the lower

level (e.g., L2 caches) during write operations. In this paper, we

propose a new cache architecture referred to as way-tagged

cache to improve the energy efficiency of write-through caches.

By maintaining the way tags of L2 cache in the L1 cache during

read operations, the proposed technique enables L2 cache to

work in an equivalent direct-mapping manner during write hits,

which account for the majority of L2 cache accesses.

I. INTRODUCTION

 We now give an overview of RAM – Random

Access Memory. This is the memory called

“primary memory” or “core memory”. The term

“core” is a reference to an earlier memory

technology in which magnetic cores were used for

the computer’s memory. This discussion will pull

material from a number of chapters in the textbook.

Primary computer memory is best considered as an

array of addressable units. Addressable units are

the smallest units of memory that have independent

addresses. In a byte-addressable memory unit, each

byte (8 bits) has an independent address, although

the computer often groups the bytes into larger units

(words, long words, etc.) and retrieves that group.

Most modern computers manipulate integers as 32-

bit (4-byte) entities, so retrieve the integers four

bytes at a time.

In this author’s opinion, byte addressing in

computers became important as the result of the use

of 8–bit character codes. Many applications

involve the movement of large numbers of

characters (coded as ASCII or EBCDIC) and thus

profit from the ability to address single characters.

Some computers, such as the CDC–6400, CDC–

7600, and all Cray models, use word addressing.

This is a result of a design decision made when

considering the main goal of such computers – large

computations involving integers and floating point

numbers. The word size in these computers is 60

bits (why not 64? – I don’t know), yielding good

precision for numeric simulations such as fluid flow

and weather prediction.

Although this is not the definition, virtual memory

has always been implemented by pairing a fast

DRAM Main Memory with a bigger, slower

“backing store”. Originally, this was magnetic

drum memory, but it soon became magnetic disk

memory. Here again is the generic two–stage

memory diagram, this time focusing on virtual

memory.

Figure 1: CACHE MEMORY ACCESING

The invention of time–sharing operating systems

introduced another variant of VM, now part of the

common definition. A program and its data could

be “swapped out” to the disk to allow another

program to run, and then “swapped in” later to

resume.

Virtual memory allows the program to have a

logical address space much larger than the

International Journal of Engineering Science Invention Research & Development; Vol. III, Issue X, April 2017

www.ijesird.com, e-ISSN: 2349-6185

S K.NAGUR BASHA and

P.L.S NARASIMHARAO ijesird, Vol. III, Issue X, April 2017/627

computers physical address space. It maps logical

addresses onto physical addresses and moves

“pages” of memory between disk and main memory

to keep the program running.

An address space is the range of addresses,

considered as unsigned integers that can be

generated. An N–bit address can access 2
N
 items,

with addresses 0 … 2
N
 – 1.

16–bit address 2
16

 items 0 to 65535

20–bit address 2
20

 items 0 to 1,048,575

32–bit address 2
32

 items 0 to 4,294,967,295

The cache systems are divided into three categories,

to implement cache system. As shown in figure, the

lower order 4-bits from 16 words in a block

constitute a word field. The second field is known

as block field used to distinguish a block from other

blocks. Its length is 7-bits, when a new block enters

the cache; the 7-bit cache block field determines the

cache position in which this block must be stored.

The third field is a Tag field, used to store higher

order 5-bits of the memory address of the block,

and to identify which of the 32blocks are mapped

into the cache.

 Tag Block Word

5 7 4

Figure 2: Main Memory Address

It is the simplest mapping technique, in which each

block from the main memory has only one possible

location in the cache organization. For example, the

block I of the main memory maps on to block i

module128 of the cache. Therefore, whenever one

of the main memory blocks 0, 128, 256, is loaded in

the cache, it is stored in the block 0. Block 1, 129,

257, are stored in block 1 of the cache and so on.

 Main memory

 Cache

Figure 3: Direct mapping technique

It is a combination of the direct and associative-

mapping techniques can be used. Blocks of the

cache are grouped into sets and the mapping allows

a block of main memory to reside in any block of

the specific set. In this case memory blocks 0,

64,128……4032 mapped into cache set 0, and they

can occupy either of the two block positions within

this set. The cache might contain the desired block.

The tag field of the address must then be

associatively compared to the tags of the two blocks

of the set to check if the desired block is present

this two associative search is simple to implement

Many of the modern developments in memory

technology involve Synchronous Dynamic

Random Access Memory, SDRAM for short.

Although we have not mentioned it, earlier memory

was asynchronous, in that the memory speed was

not related to any external speed. In SDRAM, the

memory is synchronized to the system bus and can

deliver data at the bus speed. The earlier SDRAM

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 0

Block 1

Block 127

tag

tag

tag

International Journal of Engineering Science Invention Research & Development; Vol. III, Issue X, April 2017

www.ijesird.com, e-ISSN: 2349-6185

S K.NAGUR BASHA and

P.L.S NARASIMHARAO ijesird, Vol. III, Issue X, April 2017/628

chips could deliver one data item for every clock

pulse; later designs called DDR SDRAM (for

Double Data Rate SDRAM) can deliver two data

items per clock pulse. Double Data Rate SDRAM

(DDR–SDRAM) doubles the bandwidth available

from SDRAM by transferring data at both edges of

the clock.

Figure 4: DDR-SDRAM Transfers Twice as Fast

As an example, we quote from the Dell Precision

T7500 advertisement of June 30, 2011. The

machine supports dual processors, each with six

cores. Each of the twelve cores has two 16 KB L1

caches (an Instruction Cache and a Data Cache) and

a 256 KB (?) L2 cache. The processor pair shares a

12 MB Level 3 cache. The standard memory

configuration calls for 4GB or DDR3 memory,

though the system will support up to 192 GB. The

memory bus operates at 1333MHz (2666 million

transfers per second). If it has 64 data lines to the

L3 cache (following the design of the Dell

Dimension 4700 of 2004), this corresponds to

2.66610
9
 transfers/second 8 bytes/transfer

2.1310
10

 bytes per second. This is a peak transfer

rate of 19.9 GB/sec.

6

6

4

Main memory address

 Cache

Set 0

Set 1

`

Set 63

Block 0

Block 1

Block 2

Block 3

Block 126

Block 127

tag

tag

tag

tag

tag

tag

 Main memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

International Journal of Engineering Science Invention Research & Development; Vol. III, Issue X, April 2017

www.ijesird.com, e-ISSN: 2349-6185

S K.NAGUR BASHA and

P.L.S NARASIMHARAO ijesird, Vol. III, Issue X, April 2017/629

II. LITERATURE SURVEY

A. CACHE MAPPING SCHEME

If the CPU generates an address for a

particular word in main memory, and that data

happens to be in the cache, the same main memory

address cannot be used to access the cache. Hence a

mapping scheme is required that converts the

generated main memory address into a cache

location. Mapping Scheme also determines where

the block will placed when it originally copied into

the cache.

B. CACHE OPERATION

Most of the time the cache is busy filling cache

lines (reading from memory) But the processor

doesn’t write a cache line which can be up to 128

bytes - it only writes between 1 and 8 bytes.

Therefore it must perform a read-modify-write

sequence on the cache line. Also, the cache uses

one of two write operations: Write-through, where

data is updated both on the cache and in the main

memory Write-back, where data is written to the

cache, and updated in the main memory only when

the cache line is replaced.

C. MAPPING SCHEME 1:

 DIRECT MAPPED CACHE:

The cache consists of normal high speed

random access memory, and each location in the

cache holds the data, at an address in the cache

given by the lower significant bits of the main

memory address. This enables the block to be

selected directly from the lower significant bits of

the memory address. The remaining higher

significant bits of the address are stored in the cache

with the data to complete the identification of the

cached data.

 Figure 5: cache direct mapping

The address from the processor is divided into two

fields, a tag and an index. The tag consists of the

higher significant bits of the address, which are

stored with the data. The index is the lower

significant bits of the address used to address the

cache. When the memory is referenced, the index is

first used to access a word in the cache. Then the

tag stored in the accessed word is read and

compared with the tag in the address. If the two tags

are the same, indicating that the word is the one

required, access is made to the addressed cache

word. However, if the tags are not the same,

indicating that the required word is not in the cache,

reference is made to the main memory to find it.

For a memory read operation, the word is then

transferred into the cache where it is accessed. It is

possible to pass the information to the cache and the

processor simultaneously, i.e., to read-through the

cache, on a miss. The cache location is altered for a

write operation. The main memory may be altered

at the same time (write-through) or later. The main

memory address is compared of a tag, an index, and

a word with in a line. All the words within a line in

the cache have the same stored tag. The index part

to the address is used to access the cache and the

stored tag is compared with required tag address.

For a read operation, if the tags are the same the

word within the block is selected for transfer to the

processor. If the tags are not the same, the block

International Journal of Engineering Science Invention Research & Development; Vol. III, Issue X, April 2017

www.ijesird.com, e-ISSN: 2349-6185

S K.NAGUR BASHA and

P.L.S NARASIMHARAO ijesird, Vol. III, Issue X, April 2017/630

containing the required word is first transferred to

the cache.

III. METHODOLOGY

A. READ AND WRITE ADDRESS CHANNELS:

Read and write transactions each have their

own address channel. The appropriate address

channel carries all of the required address and

control information for a transaction.

B. READ DATA CHANNEL

The read data channel conveys both the read

data and any read response information from the

slave back to the master. The read data channel

includes:

 The data bus, which can be 8, 16, 32,

64, 128, 256, 512, or 1024 bits wide

 A read response indicating the

completion status of the read

transaction.

Figure 6: Channel Architecture of Reads

C. WRITE DATA CHANNEL

The write data channel conveys the write data

from the master to the slave and includes:

 The data bus, which can be 8, 16, 32, 64,

128, 256, 512, or 1024 bits wide

 One byte lane strobe for every eight data

bits, indicating which bytes of the data bus

are valid.

Write data channel information is always treated as

buffered, so that the master can perform write

transactions without slave acknowledgement of

previous write transactions.

D. WRITE RESPONSE CHANNEL:

The write response channel provides a way

for the slave to respond to write transactions. All

write transactions use completion signaling. The

completion signal occurs once for each burst, not

for each individual data transfer within the burst.

Figure 7: Channel Architecture of Writes

E. READ BURST EXAMPLE:

A read burst of four transfers. In this

example, the master drives the address, and the

slave accepts it one cycle later. After the address

appears on the address bus, the data transfer occurs

on the read data channel. The slave keeps the

VALID signal LOW until the read data is available.

For the final data transfer of the burst, the slave

asserts the RLAST signal to show that the last data

item is being transferred.

The master also drives a set of control

signals showing the length and type of the burst, but

these signals are omitted from the figure for clarity.

Figure 8: Read burst

F. WRITE BURST EXAMPLE

International Journal of Engineering Science Invention Research & Development; Vol. III, Issue X, April 2017

www.ijesird.com, e-ISSN: 2349-6185

S K.NAGUR BASHA and

P.L.S NARASIMHARAO ijesird, Vol. III, Issue X, April 2017/631

The process starts when the master sends an

address and control information on the write

address channel. The master then sends each item

of write data over the write data channel. When the

master sends the last data item, the WLAST signal

goes HIGH.

Figure 9: Write burst

G. TRANSACTION ORDERING

The protocol enables out-of-order

transaction completion. It gives an ID tag to every

transaction across the interface. The protocol

requires that transactions with the same ID tag are

completed in order, but transactions with different

ID tags can be completed out of order.

If a master requires that transactions are

completed in the same order that they are issued,

then they must all have the same ID tag. If,

however, a master does not require in-order

transaction completion, it can supply the

transactions with different ID tags, enabling them to

be completed in any order. In a multi master

system, the interconnect is responsible for

appending additional information to the ID tag to

ensure that ID tags from all masters are unique.

The ID tag is similar to a master number, but with

the extension that each master can implement

multiple virtual masters within the same port by

supplying an ID tag to indicate the virtual master

number. Although complex devices can make use

of the out-of-order facility, simple devices are not

required to use it. Simple masters can issue every

transaction with the same ID tag, and simple slaves

can respond to every transaction in order,

irrespective of the ID tag.

IV. SIMULATION RESULTS

Figure 10: Cache Output

Figure 11: Cache waveforms

POWER ANALYSIS:

V. CONCLUSION

This paper presents a new energy-efficient

cache technique for high-performance

microprocessors employing the write-through

policy. The proposed technique attaches a tag to

each way in the L2 cache. This way tag is sent to

the way-tag arrays in the L1 cache when the data is

loaded from the L2 cache to the L1 cache. Utilizing

the way tags stored in the way-tag arrays, the L2

cache can be accessed as a direct-mapping cache

during the subsequent write hits, thereby reducing

cache energy consumption.

International Journal of Engineering Science Invention Research & Development; Vol. III, Issue X, April 2017

www.ijesird.com, e-ISSN: 2349-6185

S K.NAGUR BASHA and

P.L.S NARASIMHARAO ijesird, Vol. III, Issue X, April 2017/632

In this proposed system using AXI protocol

for data transmission and here developed the FIFO

architecture. Main advantages for this project

modification, reduce the power consumption up to

30%, reduce the execution time and no data lose if

Cache enable or Disable.

REFERENCES

1. G. Konstadinidis, K. Normoyle, S. Wong, S. Bhutani, H.

Stuimer, T. Johnson, A. Smith, D. Cheung, F. Romano, S. Yu,

S. Oh, V.Melamed, S. Narayanan, D. Bunsey, C. Khieu, K. J.

Wu, R. Schmitt, A. Dumlao, M. Sutera, J. Chau, andK. J. Lin,

“Implementation of a third-generation 1.1-GHz 64-bit

microprocessor,” IEEE J. Solid-State Circuits, vol. 37, no. 11,

pp. 1461–1469, Nov. 2002.

2. S. Rusu, J. Stinson, S. Tam, J. Leung, H. Muljono, and B.

Cherkauer, “A 1.5-GHz 130-nm itanium 2 processor with 6-MB

on-die L3 cache,” IEEE J. Solid-State Circuits, vol. 38, no. 11,

pp. 1887–1895, Nov. 2003.

3. D. Wendell, J. Lin, P. Kaushik, S. Seshadri, A. Wang, V.

Sundararaman, P. Wang, H. McIntyre, S. Kim, W. Hsu, H. Park,

G. Levinsky, J. Lu, M. Chirania, R. Heald, and P. Lazar, “A 4

MB on-chip L2 cache for a 90 nm 1.6 GHz 64 bit SPARC

microprocessor,” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, 2004, pp. 66–67.

4. S. Segars, “Low power design techniques for microprocessors,”

in Proc. Int. Solid-State Circuits Conf. Tutorial, 2001, pp. 268–

273. [5] A. Malik, B. Moyer, and D. Cermak, “A low power

unified cache architecture providing power and performance

flexibility,” in Proc. Int. Symp. Low Power Electron. Design,

2000, pp. 241–243.

5. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework

for architectural- level power analysis and optimizations,” in

Proc. Int. Symp. Comput. Arch., 2000, pp. 83–94.

6. J. Maiz, S. hareland, K. Zhang, and P.Armstrong,

“Characterization of multi-bit soft error events in advanced

SRAMs,” in Proc. Int. Electron Devices Meeting, 2003, pp.

21.4.1–21.4.4.

7. K. Osada, K. Yamaguchi, and Y. Saitoh, “SRAM immunity to

cosmic-ray-induced multierrors based on analysis of an induced

parasitic bipolar effect,” IEEE J. Solid-State Circuits, pp. 827–

833, 2004.

8. F. X. Ruckerbauer and G. Georgakos, “Soft error rates in 65 nm

SRAMs: Analysis of new phenomena,” in Proc. IEEE Int. On-

Line Test. Symp., 2007, pp. 203–204.

9. G. H.Asadi,V. Sridharan, M. B. Tahoori, andD.Kaeli,

“Balancing performance and reliability in the memory

hierarchy,” in Proc. Int. Symp. Perform. Anal. Syst. Softw.,

2005, pp. 269–279.

10. L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. J.

Irwin, “Soft error and energy consumption interactions: A data

cache perspective,” in Proc. Int. Symp. Low Power Electron.

Design, 2004, pp. 132–137.

11. http://www.cs.ucr.edu/~junyang/teach/161_W06/slides/L15-

cache2.pdf

12. http://www.authorstream.com/Presentation/rajendra.raju-

1199306-cache-memory/

13. http://news.softpedia.com/newsPDF/How-Cache-Memory-

Works-83803.pdf

14. http://homepage.cs.uiowa.edu/~ghosh/4-8-08.pdf

15. http://www.spec.org/cpu2000/research/umn/a

