AN OPTIMAL BIVARIATE MIXED POLICY FOR A REPAIRABLE SYSTEM USING ALPHA SERIES PROCESS

Ms. N. Joshna¹, Prof. A. Mallikarjuna Reddy² Research Scholar¹, Professor², Department of Mathematics, S.K.University, Anantapuramu, A.P, India. jyothi700@rediffmail.com¹, prof.malliavutala@gmail.com²

Abstract- This paper proposed an alternative alpha series repair mixed model based on preventive repair and failure repair. It assumes that the repair time and working time of the system form an increasing alpha series process and decreasing alpha series process respectively. Further we assumed that as soon as the system reliability reaches to predetermined reliability 'R' a preventive repair is employed to restore the system for better working condition. Under these assumptions using geometric process we derived an expression for the average cost rate under policy (R,N) in which the system is replaced whenever the number of failures reaches to 'N' or the reliability 'R' whichever occurs first. We determined an optimal replacement policy (R*,N*) such that the average cost rate is minimum. Finally, numerical results are provided to highlight the theoretical results.

Key Words: Replacement policy, renewal reward theorem, geometric process, alpha series process, and long-run average cost per unit time.

1. INTRODUCTION

Most repair replacement models assume that a failure system after repair will yield a function system which is "as good as new" and the repair times are neglected, so that the successive operating times forms a "renewal process". These types of models may be called as "perfect repair models".

Barlow and Hunter [1] studied a minimal repair model in which a minimal repair does not change the age of the system. Thereafter an imperfect repair model was developed by Brown and Proschan [2] under which a repair with probability **'p'** as perfect repair and with probability **1-p** as minimal repair. Many others worked in this direction and developed corresponding optimal replacement polices by Lam Yeh[3],Park [6], Stadje and Zuckerman [7], Stanely [8].

In general, for a deteriorating system, it is reasonable to assume that the successive working times are stochastically decreasing while the consecutive repair times after failures are stochastically increasing, due to the ageing and accumulated wearing in many systems. To model such simple repairable deteriorating system Lam [4,5] first introduced a geometric process repair model under the assumptions that the system after repair is 'not as good as new.' assumptions, Under these Wang[11] considered two kinds of replacement polices -one is based on the working age 'T' of the system and other is based on the number of failures 'N' of the system. Later developed а bivariate Zhang [12] replacement policy (T, N) to generalize Lam's work

All these research works discussed above are related to one component repairable system. However, in many practical applications, the standby techniques are usually used for improving the reliability or raising the availability of the system. Zhang [14] applied the geometric process repair model to a single cold standby repairable system with one repairman and studied a replacement policy 'N' and corresponding optimal replacement policy 'N^{*} is determined such that the long-runaverage cost per unit time is minimum. Later, Zhang applied the geometric process

Ms. N. Joshna and Prof. A. Mallikarjuna Reddy

repair model to a two unit cold standby repairable system with one repairman and studied a replacement policy 'N'. later on Wang and Zhang [2009] presented a bivariate mixed policy for a simple repairable system based preventive repair and failure repair by assuming that the repair time and working time of the system form an increasing geometric process and decreasing geometric process respectively. Further we assumed that as soon as the system reliability reaches to predetermined reliability 'R' a preventive repair is employed to restore the system for better working condition. Under these assumptions using geometric process they derived an expression for the average cost rate under policy (R,N) in which the system is replaced whenever the number of failures reaches to 'N' or the reliability 'R' whichever occurs first. We determined an optimal replacement policy (R*,N*) such that the average cost rate is minimum. Finally, numerical results are provided to highlight the theoretical results.

Zhang Y.L [13] studied some important properties of monotone processes and proved that alpha series processes is more appropriate to model the up times. On this understanding, in this chapter we have proposed to develop alpha series processes maintenance model and obtained an optimal replacement policy 'N*'

Based on this understanding, in this study we proposed an alternative alpha series repair mixed model based on preventive repair and failure repair.It assumes that the repair time and working time of the system form an increasing alpha series process and decreasing alpha series process respectively. Further we assumed that as soon as the system reliability reaches to predetermined reliability 'R' a preventive repair is employed to restore the system to better working condition. Under these assumptions using geometric process they derived an expression for the average cost rate under policy (R,N) in which the system is replaced whenever the number of failures reaches to 'N' or the reliability 'R' whichever occurs first. We determined an optimal replacement policy (R*,N*) such that the average cost rate is minimum. Finally, numerical results are provided to highlight the theoretical results.

2. THE MODEL

The following simple repairable systems with preventive repair and failure repair are considered by making the following assumptions:

- 1. In the beginning a new system is installed.
- 2. Assume that the system will be replaced by an identical one whenever it fails completely and replacement time is negligible.
- 3. Assume that the time interval between (m-1)th replacement and mth replacement of the system is called mth renewal cycle.
- 4. Assume that the time interval between (n-1)th failure repair of the system and nth failure repair of the system is called nth renewal cycle.
- 5. Assume that the preventive repair is employed once whenever the reliability of the system reaches to the critical reliability 'R'. The system after preventive repair is "as good as new" in the same repair cycle.
- 6. Assume that the failure repair of the system form an alpha series processes.
- 7. Let ψ_n , X_n , Y_n and ξ_n be respectively the working time with preventive repair, the working time without preventive repair, the repair time and total preventive repair time of the system of nthrenewal cycle, n=1,2,3,......
- 8. Let the distribution function of working time and repair time of the systems be $F_n(n^{\alpha}t), G_n(n^{\beta_1}t)$ respectively. Where $\alpha > 0, \ 0 < \beta < 1, t > 0.$

Ms. N. Joshna and Prof. A. Mallikarjuna Reddy

9. Let v_n , τ_n , and $Z_n^{(j)}$ be respectively the number of preventive repairs, the length of working interval time between two preventive repairs, and jth preventive repair of the system in the nth cycle,(j=1,2,3,..., $v_{n.}$). It can be observe that $X_n^{(m)} = \tau_n$ for m=1,2,... v_n -1, while $X_n^{(v_n)} < \tau_n$.

10. Assume that $Z_n^{(j)}$, j=1,2,3,... v_n are independent and identically distributed with distribution function $H_n(n^{\beta_2} t)$, where $0 < \beta_2 < 1$.

11. Let the total working time and total preventive repair time of the system in thenth cycle are respectively Total working time = (working time with preventive repair+ working time without preventive repair). $\varphi_n = \psi_n + X_n^{(\nu_n)}$

$$\varphi_n = \upsilon_n \tau_n + X_n^{(\upsilon_n)}$$
, where n=1,2,3....
(2.1)

12. Assume that preventive repair cost rate is 'Cp', the failure repair cost rate is 'C_f', the working reward rate is 'Cw', and the replacement cost is 'C'.

3. THE AVERAGE COST RATE UNDER POLICY (R,N)

A bivariate replacement policy (R,N) based on the critical reliability 'R' before preventive repair and failure repair number 'N' of the system is considered. The problem is to determine an optimal failure number 'N' at fixed Reliability 'R' such that the average cost rate is minimum.

Assume that ' τ_1 ' be the first replacement time of the system under policy (R,N). In general, { τ_n , n=1,2,3,...} will form a renewal process.

Let C(R,N) be the average cost rate under policy (R,N). According to the renewal reward theorem see Ross[], we have

$$C(R, N) = \frac{E[\cos t \text{ in a renewal cycle}]}{E[\text{Length in a renewal cycle}]},$$

$$C(R, N) = \frac{E[\Psi]}{E[L]}.$$
(3.1)

Where $\Psi = C_p \sum_{n=1}^{N} \xi_n + C_f \sum_{n=t}^{N-1} Y_n + C - C_w \sum_{n=1}^{N} \varphi_n$ (3.2) $L = \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N-1} Y_n + \sum_{n=1}^{N} \varphi_n$ (3.3)

$$L = \sum_{n=1}^{\infty} \xi_n + \sum_{n=1}^{\infty} Y_n + \sum_{n=1}^{\infty} \varphi_n$$
(3.3)

Now, we evaluate the expected cost and expected length of the renewal of the system as follows:

$$E\Psi = C_{p} \sum_{n=1}^{N} E\xi_{n} + C_{f} \sum_{n=t}^{N-1} EY_{n} + C - C_{w} \sum E\varphi_{n}$$

$$EL = \sum_{n=1}^{N} E\xi_{n} + \sum_{n=t}^{N-1} EY_{n} + \sum E\varphi_{n}$$
(3.4)
(3.5)

According to the assumptions of the model, the preventive repair is executed once as soon as the working length reaches τ_n or the system reliability reaches 'R'. Thus, R=1-F(τ_1)=1-F_n(τ_n)=1-F(n^{α}) for n=1 2 3

Thus,
$$R=1-F(\tau_1)=1-F_n(\tau_n)=1-F(n^{\circ})$$
, for $n=1,2,3,...$
Since the working time of the system is stochastically continuous

Since the working time of the system is stochastically continuous random variable and form a decreasing alpha series process, we have

International Journal of Engineering Science Invention Research & Development; Vol. IV, Issue XI, MAY 2018 www.ijesird.com, E-ISSN: 2349-6185

$$\tau_n = \frac{\tau_1}{n^{\alpha}} \tag{3.6}$$

Because, the critical reliability 'R' is same in any repair cycle of the system' v_n ', having the Geometric Distribution for every non-integer 'n'.

$$P(\nu_n = k) = R^k (1 - R), k = 0, 1, 2, \dots$$
(3.7)

Clearly ' υ_n ' is independent of cycle number 'n'. According to the assumption 11 or equation (2.1) we have

$$E\varphi_n = E\psi_n + EX_n^{(\nu_n)}$$
(3.8)

Let
$$E\psi_n = E(\upsilon_n \tau_n) = E\upsilon_n E\tau_n = \sum_{k=0}^{\infty} k P(\upsilon_n = k) E\tau_n$$

 $E\psi_n = \sum_{k=0}^{\infty} k R^k (1-R) = \frac{R}{1-R} \tau_n$
(3.9)

Let
$$EX_{n}^{(\nu_{n})} = E(X_{n} / X_{n} < \tau_{n})$$

 $EX_{n}^{(\nu_{n})} = \frac{1}{Fn(\tau_{n})} \int_{0}^{\tau_{n}} X dF_{n}(X)$
(3.10)

$$EX_{n}^{(\upsilon_{n})} = \frac{1}{1-R} \int_{0}^{\tau_{n}} x \, \frac{n^{\alpha}}{\lambda} \exp(-n^{\alpha} x/\lambda) \, dx$$
$$= \frac{\lambda}{n^{\alpha}} - \frac{1}{n^{\alpha}} \left[\tau_{1} \exp(-\tau_{1}/\lambda) + \lambda \exp(-\tau_{1}/\lambda) \right]$$
(3.11)

From equations (3.9),(3.11) we have

$$E\varphi_n = \frac{R}{1-R} \frac{\tau_1}{n^{\alpha}} + \frac{\lambda}{n^{\alpha}} - \frac{1}{n^{\alpha}} \left[\tau_1 \exp(-\tau_1/\lambda) + \lambda \exp(-\tau_1/\lambda) \right]$$
(3.10)

Let
$$E\xi_n = E\sum_{j=1}^{N} Z_n^{(j)}$$

 $E\xi_n = \frac{R}{1-R} \frac{\mu_2}{n^{\beta_2}}$
(3.12)

Let
$$EY_n = \int_0^\infty y \, dG_n(n^{\beta_1} y) = \frac{\mu_1}{n^{\beta_1}}$$
 (3.13)

From equation (3.4) the expected cost is given by:

$$E\Psi = \left(C_{p}\sum_{n=1}^{N}\frac{R}{1-R}\frac{\mu_{2}}{n^{\beta_{2}}} + C_{f}\sum_{n=t}^{N-1}\frac{\mu_{1}}{n^{\beta_{2}}} + C - C_{w}\sum_{n=1}^{N}\frac{R}{1-R}\frac{\tau_{1}}{n^{\alpha}} + \frac{\lambda}{n^{\alpha}} - \frac{1}{n^{\alpha}}\left[\tau_{1}\exp(-\tau_{1}/\lambda) + \lambda\exp(-\tau_{1}/\lambda)\right]\right)$$

$$EL = \left(\sum_{n=1}^{N}\frac{R}{1-R}\frac{\mu_{2}}{n^{\beta_{2}}} + \sum_{n=t}^{N-1}\frac{\mu_{1}}{n^{\beta_{2}}} + \sum_{n=t}^{N-1}\frac{\mu_{1}}{n^{\beta_{2}}} + \sum_{n=t}^{N}\frac{R}{1-R}\frac{\tau_{1}}{n^{\alpha}} + \frac{\lambda}{n^{\alpha}} - \frac{1}{n^{\alpha}}\left[\tau_{1}\exp(-\tau_{1}/\lambda) + \lambda\exp(-\tau_{1}/\lambda)\right]\right)$$
(3.14)
$$(3.15)$$

Ms. N. Joshna and Prof. A. Mallikarjuna Reddy

ijesird, Vol. IV, Issue XI, May 2018/368

International Journal of Engineering Science Invention Research & Development; Vol. IV, Issue XI, MAY 2018 www.ijesird.com, E-ISSN: 2349-6185

Let
$$l_1 = \sum_{n=1}^{N} \frac{R}{1-R} \frac{\tau_1}{n^{\alpha}} + \frac{\lambda}{n^{\alpha}} - \frac{1}{n^{\alpha}} [\tau_1 \exp(-\tau_1/\lambda) + \lambda \exp(-\tau_1/\lambda)]$$

 $l_2 = \sum_{n=1}^{N-1} \frac{\mu_1}{n^{\beta_2}}, \text{ and } l_3 = \sum_{n=1}^{N} \frac{R}{1-R} \frac{\mu_2}{n^{\beta_2}} \text{ then C(R,N) is given by}$
 $C(R,N) = \frac{C_p l_3 + C_f l_2 + C - C_w l_1}{l_1 + l_2 + l_3}$
(3.16)

4. NUMERICAL RESULTS

 α =0.315, β_1 =-0.85, β_2 =-0.65, τ -100,R=0.95, μ 1=150, μ 2=30, λ =30,cf=10,cw=20 cp=10 and C=710000

Ν	C(N)	N	C(N)
1	-7.64391	13	-8.14273
2	-9.85608	14	-7.66876
3	-10.7043	15	-7.18688
4	-10.9955	16	-6.69907
5	-11.0039	17	-6.20685
6	-10.849	18	-5.71144
7	-10.5917	19	-5.21383
8	-10.2663	20	-4.71481
9	-9.89365	21	-4.21503
10	-9.48716	22	-3.71503
11	-9.05591	23	-3.21525
12	-8.60624	24	-2.71606

Table 4.1 The average cost rate of values against 'N					
	Table:4.1	The average	cost rate of	f values a	gainst 'N'

Table:4.2The average cost rate values against 'N'

$\alpha = 0.315 \beta_1 = -0.000$	$75 \beta_2 = -0.55$	τ -100 R=0 95 µ1=	$150 \ \mu 2=30 \ \lambda=30.cf=1$	0.cw = 20 cp = 1 and C = 710000
0.010,p1 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 100,10 0.20,01	$100, \mu = 30, \pi = 30, \pi = 1$	

Ν	C(N)	Ν	C(N)
1	-7.73007	13	-9.88209
2	-10.0466	14	-9.56284
3	-11.0113	15	-9.23645
4	-11.4276	16	-8.90469
5	-11.5676	17	-8.56894
6	-11.5496	18	-8.23029
7	-11.4333	19	-7.88958
8	-11.2521	20	-7.5475
9	-11.0264	21	-7.20459
10	-10.7692	22	-6.8613
11	-10.489	23	-6.51799
12	-10.1918	24	-6.17498

Ms. N. Joshna and	Prof. A. Mallikarjuna	Reddy
-------------------	-----------------------	-------

α=0	$.315.\beta_1 = -0.95.\beta_2 = -0.$	Table:4.3The avera 75. τ -100.R=0.95. μ 1=	ge cost rate values against 'N' =150, $\mu 2=30, \lambda=30, cf$	=10.cw=20 cp=1 and	C=710000
	N	C(N)	N	C(N)	
	1	-7.55157	13	-5.99986	
	2	-9.64647	14	-5.32455	
	3	-10.3596	15	-4.63967	
	4	-10.5022	16	-3.94752	
	5	-10.3513	17	-3.24993	
	6	-10.0285	18	-2.54839	
	7	-9.59618	19	-1.84413	
	8	-9.08971	20	-1.13815	
	9	-8.53098	21	-0.43131	
	10	-7.9342	22	0.275678	
	11	-7.30913	23	0.982205	
	12	-6.66266	24	1.687747	

Table:4.4The average cost rate values against 'N' $\Omega \mathbf{P} = \Omega \Omega \mathbf{p} = 0.05 \dots - 150 \dots - 30 \Omega \mathbf{p} = 30 \Omega \mathbf{p} = 30 \Omega \mathbf{p}$

		Table:4.4 The avera	ige cost rate values against IN		
α=0	$.415, \beta_1 = -0.95, \beta_2 = -0.$	75,τ-100,R=0.95,μ ₁ =	=150, μ_2 =30, λ =30,Cf ⁻	=10, C_w =20 cp=1and	C=710000
	Ν	C(N)	Ν	C(N)	
	1	-7.16996	13	-3.74	
	2	-9.09651	14	-2.87991	
	3	-9.67559	15	-2.00735	
	4	-9.68757	16	-1.12507	
	5	-9.40142	17	-0.2353	
	6	-8.93655	18	0.660099	
	7	-8.35494	19	1.559563	
	8	-7.69238	20	2.46177	
	9	-6.97125	21	3.365586	
	10	-6.20641	22	4.270029	
	11	-5.40823	23	5.174246	
	12	-4.58422	24	6.07749	

Table:4.5 The average cost rate values against 'N'

$15,p_1-0.95,p_2-0.75$,τ-100,K-0.93,μ1-13	$50, \mu 2 = 50, \lambda = 50 \text{ cl} = 10$	0,cw=20,cp=1 and $C=$
Ν	C(N)	Ν	C(N)
1	-6.79217	13	-1.26469
2	-8.54166	14	-0.19381
3	-8.9752	15	0.892974
4	-8.8433	16	1.992361
5	-8.407	17	3.101579
6	-7.7835	18	4.218278
7	-7.03449	19	5.340442
8	-6.19617	20	6.466326
9	-5.29159	21	7.594404
10	-4.33636	22	8.723334
11	-3.34162	23	9.851929
12	-2.31562	24	10.97913

 $\alpha = 0.515, \beta_1 = -0.95, \beta_2 = -0.75, \tau - 100, R = 0.95, \mu 1 = 150, \mu 2 = 30, \lambda = 30$ cf = 10, cw = 20, cp = 1 and C = 710000

5. CONCLUSION

- i. From the table 4.1 and graph 4.1, it is examined that the long-run average cost per unit timeC(6) =-10.849 is minimum for the given α =0.315, β_1 =-0.85, β_2 =-0.65. Thus, we should replace the system at the time of 6th failure.
- ii. From the table 4.2 and graph 4.2, it is observed that the long-run average cost per unit time C(6) =-11.5496 is minimum for the given α =0.315, β_1 =-0.75, β_2 =-0.55. We should replace the system at the time of 6th failure. Thus, from the above conclusion (i) it can be concluded that the long-run average cost per unit time decreases with increasing ' α '.
- iii. From the table 4.3 and graph 4.3, it is observed that the long-run average cost per unit time C(5) =-10.3513 is minimum for the given α =0.315, β_1 =-0.95, β_2 =-0.75. We should replace the system at the time of 5th failure.

- iv. From the table 4.4 and graph 4.4, it is observed that the long-run average cost per unit time C(5) = -9.40142 is minimum for the given $\alpha=0.415$, $\beta_1=-0.95$, $\beta_2=-0.75$. We should replace the system at the time of 5th failure. Thus the value of ' α ' and C(N) are negatively related. Therefore it is possible to reduce the long run average cost per unit time just by changing the parameter value.
- v. From the table 4.5 and graph 4.5, it is observed that the long-run average cost per unit time C(3) =-8.9752 minimum for the given α =0.515, β_1 =-0.95, β_2 =-0.75. We should replace the system at the time of 3rd failure.

REFERENCES:

- [1] Barlow, R.E and Hunter, L.C, '*Optimum Preventive Maintenance Policies*', Operations Research, Vol. 08, pp.90-100, 1959.
- [2] Brown,M., and Proschan,F., 'Imperfect Repair', Journal of Applied Probability, Vol.20, PP 851-859, 1983.

- [3] Lam Yeh., 'A Note on the Optimal Replacement Problem', Advanced Applied Probability, Vol.20, pp 479-482,1988 b.
- [4] Lam Yeh., Zhang Y.L. and Zhang Y.H., 'A Geometric Processes equivalent model for a multi-state Degenerative Systems', European Journal of Operational Research, Vol.142, pp .21-29,2002.
- [5] Lam Yeh., 'A Geometric process maintenance model', South East Asian Bulletin of Mathematics, Vol.27, pp .295-305,2003.
- [6] Park,K.S., '*Optimal Number of Minimal Repairs* before Replacement', IEEE Transactions on Reliability, vol. R-28, No.2, pp.137-140, 1979.
- [7] Stadje, W., and Zuckerman, D., 'Optimal Strategies for some Repair Replacement Models', Advanced Applied Probability, Vol.22, pp. 641-656, 1990.
- [8] Stanely, A.D.J., 'On Geometric Processes and Repair Replacement Problems', Microelectronics Reliability, Vol.33, pp.489-491, 1993.
- [9] VenkataRamudu,B., and Krishna Reddy ,Y., 'An Optimal Arithmetic-Geometric process Replacement

Problem for a two unit cold standby Repairable system', International journal Computational and Applied Mathematics, Vol.6(1), pp.13-22, 2011.

- [10] Wang ,G.J and, Zhang ,Y.L, 'A bivariate mixed policy for a simple repairable system based on preventive repair and failure repair', Applied Mathematical Modeling, vol.33, pp.3354–3359, 2009.
- [11] Wang,G.Jand, Zhang,Y.L, 'Optimal repairreplacement policies for a system with two types of failures', European Journal of Operational Research, vol. 226 pp.500–506,2013.
- [12] Zhang, Y.L., 'A Bivariate Optimal Replacement Policy for a Repairable System', Journal of Applied Probability, Vol.31, pp .1123-1127, 1994.
- [13] Zhang,Y.L., 'An Optimal Replacement Policy for a three state Repairable system with a Monotone process Model', IEEE Transactions on Reliability, Vol. 53, No.4, pp. 452-457,2004.
- [14] Zhang,Y.L., 'An Optimal Geometric Process Model for a Cold Standby Repairable System', Reliability Engineering and System Safety, Vol.63, pp.107-110, 1999.