ON GLOBALLY PARA FRAMED METRIC MANIFOLD

Savita Patni
Department of Applied Science and Humaniies,
Nanhi Pari Seemant Engineering Institute, Pithoragarh savitapatni99@gmail.com

Abstract

In this paper, I have defined General Fconnexion, \mathbf{O}^{*}-F-connexion and various properties have discussed therein. Theorems related to these connexions have also been stated and proved.

Keywords: F-connexion, O*-F-connexion Para framed, Metric Manifold, Connexion,

I. Introduction

Let $M_{n}(n=r+s, r$ even $)$, be a manifold with F structure of rank r. Let there exist on M_{n}, s vector fields U and s 1-forms $\stackrel{x}{u}$, such that

$$
\overline{\bar{X}}-X=-{ }_{u}^{u}(X) \underset{x}{ },
$$

(1.1)a

Where

$$
\begin{align*}
& \bar{X} \stackrel{\operatorname{def}}{=} F X, \tag{1.1}\\
& \bar{U}=0 \tag{1.1}\\
& x \tag{1.1}\\
& x(\bar{X})=0 \tag{2.1}\\
& \left.\begin{array}{l}
x \\
u(U) \\
y
\end{array}\right)=\delta_{y}=\left\{\begin{array}{lll}
1 & \text { if } & x=y \\
0 & \text { if } & x \neq y
\end{array}\right\} .
\end{align*}
$$

 Framed F-structure and M_{n} is said to be a Globally Para Framed F-manifold or simply a globally Para Framed manifold.
Let there exist on M_{n} a Riemannian metric g , such $\stackrel{x}{u}(Y)\left(D_{X}{\underset{x}{ }}_{U}\right)+\left(D_{X} \stackrel{x}{u}\right)(Y) \underset{x}{U}=0$, that

$$
\begin{align*}
& g(\bar{X}, \bar{Y})=g(X, Y)-\stackrel{x}{u}(X){ }_{u}^{x}(Y), \tag{1.2}\\
& x(\operatorname{def} \\
& u(X) \stackrel{y}{=} g(X, U) \tag{1.2}
\end{align*}
$$

Then $\left\{\mathrm{F}, U_{x}, u, \mathrm{~g}\right\}$ is said to be Para Framed metric structure and the manifold M_{n} is called Para framed metric manifold.

Theorem (2.1). For general F-connexion in M_{n}, we
A bilinear function A in M_{n} is said to be pure in the two slots X and Y , if

$$
\begin{equation*}
A(\bar{X}, \bar{Y})+A(X, Y)=0 . \tag{1.3}
\end{equation*}
$$

A bilinear function A in M_{n} is said to be hybrid in the two slots X and Y , if

$$
\begin{equation*}
A(\bar{X}, \bar{Y})-A(X, Y)=0 . \tag{1.3}
\end{equation*}
$$

Let us put

$$
\begin{equation*}
' F(X, Y) \stackrel{\operatorname{def}}{=} g(\bar{X}, Y) \text {. } \tag{1.4}
\end{equation*}
$$

Then the following equations hold:

$$
\begin{equation*}
' F(X, Y)=-' F(Y, X) \text {. } \tag{1.5}
\end{equation*}
$$

This shows that ' F is skew-symmetric in X and Y .

$$
\begin{align*}
& ' F(\bar{X}, Y)=' F(X, \bar{Y}), \tag{1.5}\\
& ' F(\bar{X}, \bar{Y})=-' F(X, Y) . \tag{1.5}
\end{align*}
$$

This shows that F is pure in X and Y .

II. General F- Connexion

A connexion D in M_{n} is called a general F connexion, if

$$
\left(D_{X} F\right) Y=0,
$$

which is equivalent to

$$
\begin{equation*}
\left(D_{X} \bar{Y}\right)=\overline{D_{X} Y} . \tag{2.1}
\end{equation*}
$$ have

$\underline{D}_{D_{X}\binom{x}{D_{X}(Y) U_{x}}=}^{\stackrel{x}{u\left(D_{X} Y\right) U_{x}},}$

$$
\begin{equation*}
\left(D_{X}{ }^{x}\right)(Y)+\stackrel{x}{u}(Y) \stackrel{x}{u}\left(D_{X} U_{x}\right)=0, \tag{2.2}
\end{equation*}
$$

$\left(D_{X} \stackrel{x}{u}\right)(U)+\stackrel{x}{u}\left(D_{X} U_{x}^{U}\right)=0$,
$\left(D_{U}^{U} \stackrel{x}{u}\right)(\underset{x}{U})+\stackrel{x}{u}\left(D_{X}{\underset{x}{x}}_{U}^{x}\right)=0$,
$\left(D_{U} F\right) Y=0$,
$D_{U} \bar{Y}=\overline{D_{U} Y}$,
${ }_{u}^{x}\left(D_{X} \bar{Y}\right){\underset{x}{x}}_{U}=0={ }_{u}^{u}\left(D_{\bar{X}} \bar{Y}\right) \underset{x}{U}$.
Proof. Barring Y in equation (2.1)b then using the equations (1.1)a and (2.1)b in the resulting equation, we get the equation (2.2)a. Barring the equation (2.1)b and using the equations (2.1)b and (1.1)a, we get the equation (2.2)b. Barring the equation (2.2)b throughout and using (1.1)c, we obtain the equation (2.2)c. Applying ${ }_{u}^{u}$ on (2.2)a and using the equation (1.1)e, we get (2.2)d. Replacing Y by U in equation (2.2)d and using the equation (1.1)e, we obtain (2.2)e. Replacing X by U in equation (2.2)e, we get (2.2)f. Equations (2.2)g and (2.2)h are obtained by replacing X by U_{x} in equation (2.1)a and (2.1)b. Barring Y in equation (2.2)b and using the equation (1.1)d, we get the equation (2.2)i.
Theorem (2.2). Let the connexion D and E be related by
$E_{X} Y=P_{1} D_{X} Y+P_{2} D_{\bar{X}} Y+P_{3} D_{X} \bar{Y}+P_{4} D_{\bar{X}} \bar{Y}+P_{5} \overline{D_{X} Y}+P_{6} \overline{D_{\bar{X}} Y}$ $+P_{7} \overline{D_{X} \bar{Y}}+P_{8} \overline{D_{\bar{X}} \bar{Y}}$.
If D be general F -connexion then E is a general F connexion, if
$E_{X} Y=P_{1}\left(D_{X} Y+\overline{D_{X} \bar{Y}}\right)+P_{2}\left(D_{\bar{X}} Y+\overline{D_{\bar{X}} \bar{Y}}\right)+P_{3}\left(D_{X} \bar{Y}+\overline{D_{X} Y}\right)$
$+P_{4}\left(D_{\bar{X}} \bar{Y}+\overline{D_{\bar{X}} Y}\right)$.
Proof. Barring Y throughout in equation (2.3) and using (1.1)a, (1.1)c, (2.2)b and (2.2)c, we get

$$
\begin{align*}
& E_{X} \bar{Y}=\left(E_{X} F\right) Y+\overline{E_{X} Y}=P_{1} D_{X} \bar{Y}+P_{2} D_{\bar{X}} \bar{Y}+P_{3}\left(D_{X} Y\right. \\
& \left.\quad-u\left(D_{X} Y\right) U\right)+P_{4}\left(D_{\bar{X}} Y-u\left(D_{\bar{X}} Y\right) U_{x}\right)+P_{5} \overline{D_{X} \bar{Y}} \\
& +P_{6} \overline{D_{\bar{X}} \bar{Y}}+P_{7} \overline{D_{X} Y}+P_{8} \overline{D_{\bar{X}} Y} . \tag{2.5}
\end{align*}
$$

Barring the equation (2.3) throughout and using the equation (1.1)a and (2.2)i, we get

$$
\begin{align*}
& \overline{E_{X} Y}=P_{1} \overline{D_{X} Y}+P_{2} \overline{D_{\bar{X}} Y}+P_{3} \overline{D_{X} \bar{Y}}+P_{4} \overline{D_{\bar{x}} \bar{Y}}+P_{5}\left(D_{X} Y-\stackrel{x}{u\left(D_{X} Y\right) U}\right)_{x} \\
& +P_{6}\left(D_{\bar{X}} Y-\stackrel{x}{u}\left(D_{\bar{X}} Y\right) U_{x}\right)+P_{7} D_{X} \bar{Y}+P_{8} D_{\bar{X}} \bar{Y} . \tag{2.6}
\end{align*}
$$

Subtracting the equation (2.6) from (2.5), we get
$E_{X} \bar{Y}-\overline{E_{X} Y}=\left(E_{X} F\right) Y=\left(P_{1}-P_{7}\right)\left(D_{X} \bar{Y}-\overline{D_{X} Y}\right)+\left(P_{2}-P_{8}\right)\left(D_{\bar{X}} \bar{Y}+\overline{D_{\bar{X}} Y}\right)$
$+\left(P_{3}-P_{5}\right)\left(D_{X} Y-\stackrel{x}{u}\left(D_{X} Y\right) U_{x}-\overline{D_{X} \bar{Y}}\right)$
$+\left(P_{4}-P_{6}\right)\left(D_{\bar{X}} Y-\stackrel{x}{u}\left(D_{\bar{X}} Y\right) U_{x}-\overline{D_{\bar{X}} \bar{Y}}\right)$.
Now $\left(E_{X} F\right) Y=0$, if
$P_{1}=P_{7}, \quad P_{2}=P_{8}, \quad P_{3}=P_{5}, \quad P_{4}=P_{6}$.
Substituting from (2.8) in (2.3), we get the equation (2.4).
Corollary (2.1). For the general F-connexion D in M_{n}, equation (2.4) is equivalent to

$$
\begin{align*}
& E_{X} \bar{Y}=\overline{E_{X} Y}=P_{1}\left(D_{X} \bar{Y}+\overline{D_{X} Y}\right)+P_{2}\left(D_{\bar{X}} \bar{Y}+\overline{D_{\bar{X}} Y}\right)+P_{3}\left(\overline{D_{X} \bar{Y}}+D_{X} Y\right) \\
& +P_{4}\left(\overline{D_{\bar{X}} \bar{Y}}+D_{\bar{X}} Y\right)-P_{3}^{x} u\left(D_{X} Y\right) U_{x}-P_{4} u\left(D_{\bar{X}} Y\right) U \\
& E_{\bar{X}} Y=P_{1}\left(D_{\bar{X}} Y+\overline{D_{\bar{X}} \bar{Y}}\right)+P_{2}\left(D_{X} Y+\overline{D_{X} \bar{Y}}\right)+P_{3}\left(D_{\bar{X}} \bar{Y}+\overline{D_{\bar{X}} Y}\right) \\
& +P_{4}\left(D_{X} \bar{Y}+\overline{D_{X} Y}\right) \\
& -u(X)\left\{P_{2}\left(D_{U} Y+\overline{D_{U} \bar{Y}}\right)+P_{4}\left(D_{U} \bar{Y}+\overline{D_{U} Y}\right)\right\} . \tag{2.10}
\end{align*}
$$

Proof. Barring Y in equation (2.4) and barring (2.4) throughout and using the equations (1.1)a, (1.1)c and (2.2)i in the resulting equations, we get the equation (2.9). Barring X in (2.4) and using (1.1)a, (1.1)c, (2.2)b and (2.2)i in the resulting equation, we get the equation (2.10).

3. O*-F-Connexion or Quasi F-Connexion

A connexion D in M_{n} is called an O^{*}-F-connexion or Quasi F-connexion, if
$\left(D_{X} F\right) Y+\left(D_{\bar{X}} F\right) \bar{Y}=0$.
In view of (1.1)a, we have
$D_{X} \bar{Y}-\overline{D_{X} Y}+D_{\bar{X}} Y-D_{\bar{X}}(\stackrel{x}{u(Y)} \underset{x}{U})-\overline{D_{\bar{X}} \bar{Y}}=0$,
equivalently
$D_{X} \bar{Y}-\overline{D_{X} Y}+D_{\bar{X}} Y-\left\{\left(D_{\bar{x}}{ }^{x}\right) Y+\stackrel{x}{u}\left(D_{\bar{X}} Y\right)\right\} \underset{x}{u}{ }_{u}^{x}(Y) D_{\bar{X}}{ }_{x}^{U}-\overline{D_{\bar{x}}} \overline{\bar{Y}}=0$
(3.2)b

Barring Y in equation (3.2)a and using (1.1)d, we get $\stackrel{x}{u}\left(D_{X} Y\right) \underset{x}{U}-D_{X} \stackrel{x}{u}(Y) \stackrel{x}{U_{x}}+\stackrel{x}{u}\left(D_{\bar{X}} \bar{Y}\right) \underset{x}{U}=0$
Barring (3.2)c throughout and using (1.1)c, we get

$$
\begin{equation*}
\overline{D_{X} u(Y) U_{x}}=0=\overline{D_{\bar{X}} \stackrel{x}{u(Y) U_{x}}} \tag{3.2}
\end{equation*}
$$

Substituting $X=U_{x}$ in (3.2)d and using (1.1)c, we get

$$
\begin{equation*}
D_{x} \mathcal{M}_{x}^{x}(Y) U_{x}=0 \tag{3.2}
\end{equation*}
$$

Theorem (3.1). For an $O^{*}-$ F-connexion in M_{n}, we have

$$
\overline{D_{X} \bar{Y}}-D_{X} Y+{ }_{u}^{x}\left(D_{X} Y\right) \underset{x}{U}+\overline{D_{\bar{X}} Y}-D_{\bar{X}} \bar{Y}+\stackrel{x}{u\left(D_{\bar{X}} \bar{Y}\right)} \underset{x}{U}=0
$$

$$
E_{x} Y=\left(P_{6}+P_{7}+\underline{P}_{4}\right) D_{x} Y+(\underbrace{\left.P_{5}+P_{8}-P_{3}\right) D_{\bar{X}} Y+P_{3} D_{x} \bar{Y}+P_{4} D_{\bar{X}} \bar{Y}+P_{5} \overline{D_{x} Y}}_{5}
$$

$$
\begin{equation*}
\text { , } \quad x^{x}(3.3) \mathrm{n} \tag{3.4}
\end{equation*}
$$

$$
+P_{6} \overline{D_{\bar{X}} Y}+P_{7} \overline{D_{X} \overline{\bar{Y}}}+P_{8} \overline{D_{\bar{X}} \overline{\bar{Y}}}
$$

$$
\begin{aligned}
& -\overline{D_{X}{ }_{x}}-\left\{\left(D_{\bar{X}}{ }^{x}\right)(\underset{x}{U})+\stackrel{x}{u}\left(D_{\bar{X}} U_{x}\right)\right\} \underset{x}{U}=0
\end{aligned}
$$

$$
\begin{aligned}
& \overline{D_{X}{ }_{x}}=0=\overline{D_{\bar{X}}}{ }_{x}, \\
& \left(D_{\bar{X}} \stackrel{x}{u}\right)(U)+\stackrel{x}{u}\left(D_{\bar{X}}{ }_{x}^{U}\right)=0, \\
& D_{U} \bar{Y}=\overline{D_{U} Y} \text {, } \\
& \frac{x}{D_{U} U}=0,
\end{aligned}
$$

$$
\begin{aligned}
& { }^{x} u^{x}\left(D_{U} \bar{Y}\right)=0, \\
& \left.\underset{x}{\left(D_{U}^{x}\right.} \stackrel{x}{u}\right)(Y)+\stackrel{x}{u}(Y) \stackrel{x}{u}\left(D_{U} \underset{x}{U}\right)=0 \\
& \left.\underset{x}{\left(D_{U}\right.} \stackrel{x}{u}\right)(\underset{x}{U})+\stackrel{x}{u}\left(D_{U}{ }_{x}^{U}\right)=0, \\
& \left(D_{U}{ }^{x} u\right)(\bar{Y})=0, \\
& \left.{ }_{u}^{x} u^{x} D_{X} \bar{Y}\right)-\left(D_{\bar{X}}^{x} u\right)(Y)-u^{x}(Y) \stackrel{x}{u}\left(D_{\bar{X}}{ }_{x}^{U}\right)=0,(3.3) 1 \\
& \left(D_{X}{ }^{x}\right)(\bar{Y})+\stackrel{x}{u}\left(D_{X} \bar{Y}\right)=0=\left(D_{\bar{X}}^{\stackrel{x}{u})(\bar{Y})+\stackrel{x}{u}\left(D_{\bar{X}} \bar{Y}\right), ~}\right. \\
& \text { (3.3)m }
\end{aligned}
$$

Proof. Barring the equation (3.3) throughout and using the equation (1.1)a, we get
$\overline{E_{X} Y}=P_{1} \overline{D_{X} Y}+P_{2} \overline{D_{\bar{X}} Y}+P_{3} \overline{D_{X} \bar{Y}}+P_{4} \overline{D_{\bar{X}} \bar{Y}}+P_{5}\left(D_{X} Y-\stackrel{x}{u}\left(D_{X} Y\right) U\right)$
$+P_{6}\left(D_{\bar{X}} Y-\stackrel{x}{u}\left(D_{\bar{X}} Y\right){\underset{x}{U}}\right)+P_{7}\left(D_{X} \bar{Y}-\stackrel{x}{u}\left(D_{X} \bar{Y}\right) \underset{x}{U}\right)$
$+P_{8}\left(D_{\bar{X}} \bar{Y}-\stackrel{x}{u}\left(D_{\bar{X}} \bar{Y}\right) U\right)$.

(3.2)d and (3.2)e, we get

$+P_{5}\left(D_{\bar{X}} \bar{Y}-\stackrel{x}{u}\left(D_{\bar{X}} \bar{Y}\right){\underset{x}{U}}^{x}\right)+P_{6}\left(D_{X} \bar{Y}-\stackrel{x}{u}\left(D_{X} \bar{Y}\right) \underset{x}{U}\right)$
$+P_{7}\left(D_{\bar{X}} Y-\stackrel{x}{u}\left(D_{\bar{X}} Y\right) U_{x}\right)+P_{8}\left(D_{X} Y-\stackrel{x}{u}\left(D_{X} Y\right) U_{x}\right)$.
Adding the equations (3.5) and (3.6), we get
$\overline{E_{X} Y}+\overline{E_{\bar{X}} \bar{Y}}=\left(P_{1}+P_{4}\right)\left(\overline{D_{X} Y}+\overline{D_{\bar{X}} \bar{Y}}\right)+\left(P_{2}+P_{3}\right)\left(\overline{D_{\bar{X}} Y}+\overline{D_{X} \bar{Y}}\right)$
$+\left(P_{5}+P_{8}\right)\left(D_{X} Y+D_{\bar{X}} \bar{Y} \quad-\stackrel{x}{u}\left(D_{X} Y\right) \stackrel{x}{x}-\stackrel{x}{u}\left(D_{\bar{X}} \bar{Y}\right) U\right)$
$+\left(P_{6}+P_{7}\right)\left(D_{\bar{X}} Y+D_{X} \bar{Y} \quad-\quad-u^{u}\left(D_{\bar{X}} Y\right) \underset{x}{U-u\left(D_{X} \bar{Y}\right)} \underset{x}{U}\right)$
$-P_{2}{ }^{x}(X) \overline{D_{U} \bar{Y}}-P_{4}{ }_{x}^{x}(X) \overline{D_{U} Y}$.
Barring Y in (3.3) and using (1.1)a, (1.1)c and (3.2)d, we get

$$
\begin{align*}
& E_{X} \bar{Y}=\left(E_{X} F\right) Y+\overline{E_{X} Y}=P_{1} D_{X} \bar{Y}+P_{2} D_{\bar{X}} \bar{Y}+P_{3}\left(D_{X} Y-D_{X} \stackrel{x}{u(Y) U}\right) \\
& +P_{4}\left(D_{\bar{X}} Y-D_{\bar{X}}{ }_{x}^{x}(Y) U_{x}\right)+P_{5} \overline{D_{X} \bar{Y}}+P_{6} \overline{D_{\bar{X}} \overline{\bar{Y}}} \\
& +P_{7} \overline{D_{X} Y}+P_{8} \overline{D_{\bar{X}} Y} \tag{3.8}
\end{align*}
$$

Barring X, Y in (3.8) and using the equations (1.1) $4_{5]}$ (1.1)c, (1.1)d, (3.2)d and (3.2)e we get

$$
\begin{aligned}
& \left(E_{\bar{X}} F\right)(\bar{Y})+\overline{E_{\bar{X}} \overline{\bar{Y}}}=P_{1}\left(D_{\bar{X}} Y-D_{\bar{X}} \quad \underset{x}{u}(Y) U_{x}\right)+P_{2}\left(D_{X} Y\right.
\end{aligned}
$$

$$
\begin{align*}
& -P_{4}{ }^{x} u(X) D_{U} \bar{Y}+P_{5} \overline{D_{\bar{X}} Y}+P_{6} \overline{D_{X} Y}-P_{6} \stackrel{x}{u}(X) \overline{D_{U} Y} \\
& +P_{7} \overline{D_{\bar{X}} \bar{Y}}+P_{8} \overline{D_{X} \bar{Y}}-P_{8}{ }^{x}(X) \overline{D_{U} \bar{Y}} . \tag{3.9}
\end{align*}
$$

Adding the equations (3.8) and (3.9), we get

$$
\begin{gathered}
\left(E_{X} F\right) Y+\left(E_{\bar{X}} F\right) \bar{Y}+\overline{E_{X} Y}+E_{\bar{X}} \overline{\bar{Y}}=\left(P_{1}+P_{4}\right)\left(D_{\bar{X}} Y+D_{X} \bar{Y}\right. \\
\quad \quad x\left(D_{X} \bar{Y}\right) \underset{x}{u}-u\left(D_{\bar{X}} Y\right){\underset{x}{x}}^{x}-P_{2}{ }^{x}(X) \overline{D_{U} \bar{Y}} \\
\quad+\left(P_{2}+P_{3}\right)\left(D_{X} Y+D_{\bar{X}} \bar{Y}-D_{X}{ }_{x}^{u}(Y) U\right)-P_{4} \stackrel{x}{u}(X) \overline{D_{U} Y}
\end{gathered}
$$

$$
\begin{align*}
& +\left(P_{5}+P_{8}\right)\left(\overline{D_{X} \bar{Y}}+\overline{D_{\bar{X}} Y}\right)+\left(P_{6}+P_{7}\right)\left(\overline{D_{\bar{X}} \bar{Y}}+\overline{D_{X} Y}\right) \\
& -P_{6}{ }^{x}(X) \overline{D_{U} Y}-P_{8}{ }^{x}(X) \overline{D_{U} \bar{Y}} . \tag{3.10}
\end{align*}
$$

Using the equations (3.2)c and (3.3)e in equation (3.10), we get

$$
\begin{equation*}
\left(E_{X} F\right) Y+\left(E_{\bar{X}} F\right) \bar{Y}+\overline{E_{X} Y}+\overline{E_{\bar{X}} \bar{Y}}=\left(P_{1}+P_{4}\right)\left(D_{\bar{X}} Y+D_{X} \bar{Y}\right. \tag{3.5}
\end{equation*}
$$

$$
\left.\underset{\mathcal{C}}{\substack{u}}\left(D_{X} \bar{Y}\right) U_{x}^{U}-\stackrel{x}{u}\left(D_{\bar{X}} Y\right) U_{x}\right)-P_{2}{ }^{x}(X) \overline{D_{U} \bar{Y}}
$$

$$
\begin{align*}
& +\left(P_{5}+P_{8}\right)\left(\overline{D_{X} \bar{Y}}+\overline{D_{\bar{X}} Y}\right) \\
& +\left(P_{6}+P_{7}\right)\left(\overline{D_{\bar{X}} \bar{Y}}+\overline{D_{X} Y}\right)-P_{6}{ }^{x} u(X) \overline{D_{U} Y}-P_{8}{ }^{x} u(X) \overline{D_{U} \bar{Y}} \tag{3.6}
\end{align*}
$$

Since D is an $O^{*}-F$-connexion in M_{n} then the necessary and sufficient condition that E is an O^{*}-F-connexion in M_{n} is obtained by comparing the equations (3.7) and (3.11), we get

$$
\begin{array}{cl}
P_{1}+P_{4}=P_{6}+P_{7} & \text { i.e. } \quad P_{1}=P_{6}+P_{7}-P_{4} \\
P_{2}+P_{3}=P_{5}+P_{8} & \text { i.e. } P_{2}=P_{5}+P_{8}-P_{3} \tag{3.7}
\end{array}
$$

Substituting from (3.12) in (2.3), we get the equation (3.4).

REFERENCES

[1] Auslander, L. and Mackenzi, R.C., Introduction to differentiable manifolds, Mc Graw-Hills, New York. 1963
[2] Bochner, S. and Yano, K Tensor fields in non-symmetric connexions, Ann. Math., 56, 504-579. 1952
[3] Boothby, M.M. and Wong,On contact manifolds, Anna Math., 68, 391-404.1958
[4] Duggal, K.L. ,On differentiable structures defined by algebraic equations II, F-connexions, tensor, N.S., 22, 255-260. 1971
Eliopoulas, H.A.,On the general theory of differentiable manifold with almost tangent structure, Canad. Math., Bull., 8, 721-748. 1965
[6] Hatakeyama, Y.,Some notes on a differentiable manifolds with almost contact structure, Tôhoku Math., J., 15, 170-183. 1963
[7] Kobayashi, S. ,Theory of connexions, Ann. Math., Pure Appl., 43, 119194.1957
[8] Mishra, R.S. ,On almost complex spaces II, General F-connexion, The Acad. of Prog. Math., Allahabad, 1, 33-36.1967
[9] Mishra, R.S. ,Structures on a differentiable manifold and their applications, Chandrama Prakashan, 50-A, Balrampur House, Allahabad. 1984
[10] Mishra, R.S. (A course in tensors with applications to Riemannian geometry, Pothishala, Pvt. Ltd., Allahabad. 1995.
[11] Mishra, R.S. and Pandey, : S.B. ,On birecurrent Kähler manifold, Indian J. Pure and Appl. Math., 879-888. 1975
[12] Mishra, R.S. and Pandey S.B ,On almost contact metric manifolds (Nijenhuis Tensor), Ganita, 30, 20-26. 1979
[13] Pandey, S.B., On connexions in Hyperbolic general differentiable manifold, J.T.S.I., Lucknow. 1993
[14] Pandey, S.B. and Dasila, L. ,On 3-Structure metric manifolds, J.T.S.I., 15, 43-50. 1997
[15] Pandey, S.B. and Joshi, On connexions in hyperbolic general differentiable manifold, J.T.S.I., 13, 7-11. 1995

