
International Journal of Engineering Science Invention Research & Development; Vol. I Issue II August 2014

www.ijesird.com e-ISSN: 2349-6185

 Minakshi Sharma and Sapna

 ijesird, Vol. I (II) August 2014/ 44

A Study of Agent Oriented Metrics
1
Ms. Minakshi Sharma,

2
Mrs Sapna

1
Assistant Professor, CRM, Jat college Hisar,

2
Assistant Professor, CRM, Jat college Hisar, INDIA

1
Minakshi_cselect@yahoo.com ,

2
Sapna_mahar@yahoo.com

Abstract: For better quality of software, software engineering

strongly recommends applying metrics in software development.

Software metric are used to analyse and examine various

software characteristics. The paper includes a set of well known

and commonly applied traditional and objects oriented software

metrics which could be applied to agent oriented programming

and a set of agent oriented metrics. Agent oriented metrics will

consists of some traditional, object oriented metrics and some

pure agent oriented metrics.

Keywords— Object-Oriented Metrics, Agent Oriented Metrics,

Measurement.

I. INTRODUCTION

Already there are a lots of metrics have been researched,

developed and used in ensuring software quality and allow

statistical analysis. Software metrics provides estimates of the

resources needed during development. Metrics allows formal

evaluation of software product design and establish software

product standards. Software metrics are divided into Product,

process and resources. In this paper we will focus on the

product metrics. We will first discuss existing popular metrics

used in traditional and object-oriented programming and see

how they can be applied to the different aspects of software

agent.[1] has listed some software quality factors:

Correctness, reliability, efficiency, integrity, usability,

maintainability, testability, flexibility, portability, reusability

and interoperability. Basically, software metrics should be

able to examine the efficiency of the design implementation,

architectural complexity, code understandability, software

testability and maintainability. Software metrics should be

able to examine the efficiency of the design implementation,

architectural complexity, code understandability, function

usability, component reusability and interoperability, software

correctness, portability and maintainability. There are well

established set of software metrics and many of them

emphasized on software object. Agent-Oriented Software

Engineering is the one of the most recent contributions to the

field of Software Engineering. Agent Oriented Software

Engineering (AOSE) is a new programming paradigm that has

evolved from Object Oriented Software Engineering (OOSE).

There are similarities in concept between the two technologies

such as data abstraction, encapsulation, cohesiveness and

coupling. However, agents tend to focus more on the
autonomy of one-self and the interaction among different

agents. In terms of metrics, Object Oriented (OO) metrics

focus on the object class, information hiding, inheritance,

polymorphism and coupling. Agent metrics emphasize in

measuring agent characteristics such as social ability,

autonomy, reactivity, adaptability, intelligence, learning,

proactively, goal-oriented and mobility. Therefore, a complete

Agent Metrics Suite should include a subset of OO metrics

and a set of pure Agent metrics[2].

The structure of this paper is as follows: Section 2 gives a

brief description about measurement and metrics, why they

are needed. Section 3 explains a brief introduction about the

evolution of metrics from traditional to agent oriented metrics.

Section 4 explains approaches of metric which includes some

popular traditional metrics, some well known object-oriented

metrics that can be applied to agents and a brief introduction

about the agent metrics based on their characteristics and

some product performance metrics especially applied for

AOSE and finally conclusion is given in Section 5.

II. MEASUREMENT

First of all we must discuss what is measurement, one of

the definitions of measurement is as: “Formally we define

measurement as a mapping from the empirical world to the

formal, relational world. Consequently, a measure is a

number or symbol assigned to an entity by this mapping in

order to characterize an attribute.[3]”

A. Developing a set of metrics

IEEE Standard 1061 lays out a methodology for

developing metrics for software quality attributes. The

standard defines an attribute as “a measurable physical or

abstract property of an entity” A quality factor is a

management oriented attribute of software that contributes to

its quality”. A metric is a measurement function, and a

software quality metric is “a function whose inputs are

software data and whose output is a single numerical value
that can be interpreted as the degree to which software

possesses a given attribute that affects its quality”.

Before developing a sit of metrics for a project, we have to

create a list of quality factors that are important for it:

 Associated with each quality factor is a direct metric

that serves as a quantitative representation of a quality factor.

 For each quality factor, assign one or more direct

metrics to represent the quality factor, and assign direct metric

values to serve as quantitative requirements for that quality

factor.

 Use only validated metrics to assess current and

future product and process quality.

Standard 1061 lays out several interesting validation

criteria that are: Correlation, Consistency, Tracking,

Predictability, Discriminative power and Reliability. These

validation criteria are expressed in terms of quantitative

International Journal of Engineering Science Invention Research & Development; Vol. I Issue II August 2014

www.ijesird.com e-ISSN: 2349-6185

 Minakshi Sharma and Sapna

 ijesird, Vol. I (II) August 2014/ 45

relationship between the attribute being measured and the

metric.

B. Why do we need Software Metrics

Question arises is why we should spend time and effort on

software metrics, so here is some of the benefit of

incorporating metrics in the software development.

 Specify and implement tools or aids for assessing

software product quality.

 Resources allocation for product development.

 Formal evaluation of software product design.

 Formal statistical analysis of product.

 Define the standards for the software products

developed in its organizational unit.

III. EVOLUTION OF METRICS:

Metrics are key components of many engineering

discipline, software engineering is no exception. Software

metrics is often used to measurements for computer software.

Since 1950s Software Engineering is greatly researched on,

software metrics were developed continuously so, become an

important research area in the field of software engineering.

Software engineering community and ISO9000-3 have

recognized the need of metrics very well.

In very beginning there very not proper development cycle

for designing software, but when requirement for software

programs get more complicated, software engineering came

into picture and Software Development Life Cycle was

introduced. At the same time first set of software metrics was

proposed and accepted. These software metrics was proposed

for structural programming and known as traditional metrics.

Some of the more appropriate traditional metrics that can be

applied to software agents are listed in section 4.

Software Engineering evolves over time and Object

Oriented Software Engineering (OOSE) grew popularity over

the years. “Pure” Object Oriented metrics were introduced to

measure the essences of OO software concepts and notions

like encapsulation, inheritance and polymorphism. Some of

the OO metrics suites are described in section 5 that can

measure OO software projects.

Somehow it is true; agents are derived from the objects. Agent

Oriented Software engineering (AOSE) is an evolution of a

new software engineering paradigm though it borrowed a

numerous features from OOSE. However, agents tend to focus

more on the autonomy of oneself and the interaction among

the different agents. Some features of the object-oriented

paradigm are not too useful in agent programming. AOSE has

introduced new features and concepts that differentiate it from

OOSE. Apart from the normal encapsulation, agents

encapsulate their behaviour within themselves. They would be

able to make their own decision and their behaviours are non-

absolute. Agents focus and depend greatly upon their

environment and counterparts in performing their task and

goals through collaboration and interaction. This introduced a

more complex form of interaction messages to facilitate the

transferring of information among the agents. Artificial

Intelligence is also used to embed in some of the agents. This

would include the knowledge discovery and learning ability.

AOSE has introduced.

IV. APPROACHES OF SOFTWARE METRIC

We have listed here three approaches for software metrics,

which are Traditional metrics, Object Oriented and Agent

Oriented metric. These three approaches are not altogether

different form each other but overlap with each other as

shown in figure 1.

Fig. 1 Relationship between Traditional, Object-Oriented and Agent Oriented
Metrics.

In Figure 1. T depicts a set of traditional metric, OO

stands for a set for object oriented metrics , A is set of metrics

for agent oriented metrics, A-O is the set of metrics common

to both object and agent , TAO include the set of metrics

common to Traditional object and agent.

A. Traditional Metrics

 We will list some of the more appropriate traditional

metrics that can be applied to software agents. In an object-

oriented system, traditional metrics are generally applied to

the methods of a class. We could also use the same metrics for

the methods in the agents.

1) Complexity measurement: It is used to evaluate the

application of an algorithm. It could be of method

level, class level or system level. These are

Conditions Count(COC), Variable count(VAC),

Inner Method Call(IMC), Outer Method Call (OMC),

Cohesion Ratio Metrics(CRM), Cyclomatic

Complexity Number (CCN), Knot Measure(KNM),

Line Of Code(LOC), NLE(Nesting Levels).

2) Size Measurement: The size of the agent a measure

of understand ability, reusability and maintainability.

It is a measurement of the number of codes in the

agent. These are Line Of Code (LOC), Average

Module Length (AML), Executable Statements

(EST), Executable Size(ESI).

3) Comment Measurement: It is a measure of

understand ability, reusability and maintainability.

Includes Delivered Source Instructions(DSI),

International Journal of Engineering Science Invention Research & Development; Vol. I Issue II August 2014

www.ijesird.com e-ISSN: 2349-6185

 Minakshi Sharma and Sapna

 ijesird, Vol. I (II) August 2014/ 46

Comment Line Per Method(CLM), Percentage of

Commented Methods(PCM).

4) Attribute Measurement: It is a measure of testability,

reusability and maintainability. It includes Variable

Count(VC), Live variable(LV), Binding among

Modules(BAM).

5) Method Measurement: It is a measure of agent

functionality, maintainability and testability. It

includes Method Count(MC), Number of Parameters

per Method(NPM),

Average Method Size(AMS).

B. Object Oriented Metrics:

In recent years, OO technologies have emerged as a

dominant software engineering practice and are often heralded

as the silver bullet for solving software problems. As OO

technologies has some new characteristics, such as data

abstraction, encapsulation, inheritance, polymorphism,

information hiding and reuse, traditional software metrics do

not readily lend themselves to the OO notions. Therefore, new

ways of measuring OO software are largely researched on.

After years of research, many OO metrics are proposed, each

targeting at a specific phrase of the OO development life

cycle. In the following subsections, some of the more

established metric suites are briefly discussed.

Chidamber and Kemerer, OO metrics suite[5]

With an aim to measure the key notions of OO software,

Chidamber and Kemerer developed a set of six metrics to

identify certain design traits in OO software, like inheritance,

coupling and cohesion etc. The various metrics in the C&K

OO metrics suite are hereby summarized.

1. Depth of Inheritance Tree (DIT). This metric measures the

maximum level of the inheritance hierarchy of a class.

2. Number Of Children (NOC). This metric counts the number

of immediate subclasses belonging to a class.

3. Lack of Cohesion in Methods (LCOM). This metric is

intended to measure the lack of cohesion in the methods of a

class.

4. Weighted Methods per Class (WMC). The sum of the

complexities of the methods in a class.

5. Coupling between objects (CBO). The number of other

classes whose methods or instance attribute(s) are used by

methods of this class.

6. Response for a Class (RFC). The sum of the number of

methods in the class and the number of methods called by

each of these methods, where each called method is counted

once.

Metrics for Object Oriented Design (MOOD) by Abreu[6]

MOOD is a metrics suite that targets specifically to obtain

measurements for the design phrase. The emphasis behind the

development of the metrics is on the features of OO design,

namely inheritance, encapsulation and coupling. Each metrics

in MOOD suite is expressed as a quotient where the

numerator is the actual use of a particular mechanism (i.e.

inheritance, information hiding, coupling and polymorphism)

in the system being measured and the nominator is the

maximum possible use of the same mechanism. The value of

each metric would then range from 0 (total absence), to

1(maximum possible presence). The six metrics are

summarized as follows:

1. Attribute Hiding Factor (AHF). This metric is the

ratio of hidden (private and protected) attributes to

total attributes and is proposed as a measurement of

encapsulation and information hiding.

2. Method Hiding Factor (MHF). This metric is the

ratio of the total inherited methods to total methods

defined. Similar to AHF, it is proposed as a

measurement of encapsulation and information

hiding.

3. Coupling Factor (CF). CF is defined as the ratio of

the maximum possible number of couplings in the

system to the actual number of couplings not

imputable to inheritance.

4. Polymorphism Factor (PF). PF is defined as the ratio

of the actual number of possible different

polymorphic situation for a class to the maximum

number of possible distinct polymorphic situations

for the class.

5. Attribute Inheritance Factor (AIF). AIF is defined as

the ratio of the sum of inherited attributes in all

classes of the system under consideration to the total

number of available attributes for all classes.

6. Method Inheritance Factor (MIF). MIF is defined as

the ratio of the sum of inherited methods in all

classes of the system under consideration to the total

number of available methods for all classes.

C. Agent Oriented Metric

1) Existing framework for agent software

Metrics- Before proceeding further, we must have a look

what an agent is. “An agent is an encapsulated computer

system that is situated in some environment, and that is

capable of flexible, autonomous action in that environment

in order to meet its design objectives”.[7]

Characteristics of agent: agents have their own will

(autonomy), they are able to interact with each other (social

ability), they respond to stimulus (reactivity), and they take

initiative (pro-activity). in addition agents can move around

(mobility), they are truthful (veracity), they do what they’re

told to do (benevolence), and they will perform in an optimal

manner to achieve goals (rationality).

Not a single agent metric alone can determine the

efficiency and quality of the agent since each agent type

perform different roles in their own environment and require

different characteristics and behaviours

International Journal of Engineering Science Invention Research & Development; Vol. I Issue II August 2014

www.ijesird.com e-ISSN: 2349-6185

 Minakshi Sharma and Sapna

 ijesird, Vol. I (II) August 2014/ 47

There are a number of papers regarding software agent

metrics. Most of the papers have described the overview of

what to measure but have not illustrated the detail of how to

measure them.

Metrics for agents intelligence

It has suggested that software agent intelligence can be

divided into behaviour intelligence, knowledge discovery,

mobility, interactions and cooperation. [1]

Metrics for agent mobility

 For the performance of mobile agent, it has suggested four

metrics: time of creating and launching messenger agents,

message sending and setup time, message travelling time and

message round-trip time. [8]

Metrics for agent complexity

It has suggested subjective and objective algorithmic

complexity for Multi-Agent System. The subjective metric is

based on a modified version of Function Points and the

technical complexity. The objective metric used

communicative cohesion metrics to decide the applicability of

cyclomatic complexity in determining the system complexity.

Metrics for agent oriented modeling methods

It has identified agent attributes and grouped them into

three different perspectives: agents’ internal characteristics,

interaction process attributes, and those more directly inherent

to the design and development process. For the internal

attributes, they have suggested the agent autonomy, reactivity,

pro-activeness, beliefs, goals, intentions. For interaction

attributes, they have suggested the agents’ organization

relationships, conversations, interface, interests, and

interactions with environment and agent subsystems. As for

the other process requirement, modularity, decomposition,

dependence, abstraction, system view and communication

support have been explored[9].

Agent product performance metrics

It defines a whole set of performance metrics related to the

product, process and resources technologies and components

of the software agents. The product performance metrics

measured the agents and the system in terms of their design,

description and working level[10, 11]. We will discuss these

metrics in section 7 in detail.

2) Product Performance Metrics[12]

We may classify Product Performance metrics in two parts

which are Agent and System. These two are further divided in

various levels as shown in figure2

Fig. 2 Classification of Product Performance metrics

Agent design level:

(i) Software agent size (implicit performance): The size

considers the functional size and the physical size of a

software agent. A large agent size can cause a low

performance and mobility. These are Executable Statements,

Executable Size, Lines Of Code, Average Module Length.

(ii) Software agent component structure (structure

performance): The structure depends on the kind of the agent

(intelligent, reactive, deliberative etc.), the agent interface is

related to the kind of agent coupling (as fixed, variable or

evolutionary). The structure affects the coupling effects and

changeability. These are Lack of Cohesion between Methods,

Cohesion Ratio Metrics, Conditions Count, Loop Count,

Method Hiding Factor, and Attribute Hiding Factor.

(iii) Software agent complexity (immanent performance):

The complexity is divided in the computational and

psychological complexity and should be measured on both

concrete aspects. A high computational complexity leads to a

weak performance. These are Cyclomatic Complexity

Number, Conditions Count, Variable Count, Inner Method

Call, Outer Method Call, Cohesion Ratio Metrics, Knot

Measure, Loop Count, Nesting Levels, Live Variables, and

Number of Parameters per Method.

(iv)Software agent functionality (action performance):

This aspect considers the appropriateness of the agent

compared to the requirements. A high functionality can injure

the performance and the chosen object-oriented

implementation paradigm. These are Method Count, Number

of Parameters per Method, Response For a Class.

Agent

Design Level

Description Level

Working Level

System

Design Level

Description Level

Working Level

International Journal of Engineering Science Invention Research & Development; Vol. I Issue II August 2014

www.ijesird.com e-ISSN: 2349-6185

 Minakshi Sharma and Sapna

 ijesird, Vol. I (II) August 2014/ 48

System design level:

(i) Agent system size (potential performance): It includes

the potential number of (active) agents and their contents; on

the other hand, the size is related to the environment. A small

agent system size can cause an overhead and reduce the

application area.

(ii) Agent system component structure (architecture

performance): This metric includes agent hierarchies vs.

classless, the degree of parallelism, the kinds of organizational

functions (representational, organizational, cognitive,

interaction, productive, preservative). The system structure

relates to the distributed performance and system

changeability.

(iii) Agent system complexity (entropy performance):

One of the measure aspects leads to the degree of the

organizational dimensions (social, relational, physical,

environmental and personal). It influences the system

applicability.

(ii) Agent system functionality (model performance):

It considers the realization of all of the functional system

requirements. The distribution of the functionality in the

system components affects their efficiency.

Agent description level:

(i) Software agent development description level (change

performance): It considers the completeness of the

development documentation (including comment, tests and

change supports). The description level determines the

maintainability of an agent. These are Comment Lines per

Method, Percentage of Commented Methods, Response For

a Class.

(ii) Software agent application description level (usability

performance): It includes the quality (readability,

completeness, online support etc.) of the user documentation.

This evaluation considers the usability of a software agent.

(iii) Software agent publication description level

(distribution performance): This metric considers the public

relations for using the software agent and involves the system

description. A high publication level supports the spreading of

the agent use.

System description level:

(i) Agent system development description level

(maintenance performance): It considers the integration of

the agent concepts and dynamics and their sufficient

documentation. It affects overall system maintenance.

(ii) Agent system application description level (using

performance): It considers the user documentation of all

aspects of the system applications related to the different user

categories. A good application description is a precondition

for an efficient use of the whole system.

(iii) Agent system publication description level (marketing

performance): Publication metrics evaluate the user

acceptance and marketing aspects of the agent-based system

application. A good system publication supports the

spreading.

Agent working level:

(i) Software agent communication level (communication

performance): It considers the size of communication and the

level of the conversation required to sustain the activities.

High communication intensity can affect a flexible

application. These are Response For a Class, Coupling

Between Objects, Number of Parameters per Method.

(ii) Software agent interaction level (interaction

performance) AI: It is related to the agent context and

environment and their different kinds of actions (as

transformation, reflecting, executing, modification,

commands, perception, deliberation). It expresses the activity

of an agent. These are Response For a Class, Coupling

Between Objects.

(iii) Software agent learning level (learning performance

“intelligence of the mind”) AI: This metric evaluates the

skills, intentions and actions of extending the agent facilities

itself. It is based on the type of an agent and his roles in the

system. (how much can be learn “discovery of

data/knowledge”, effect upon the agent, time and effort

needed “bring latency to agent and may impair overall goals

achievement”, value of these new knowledge) These are

Attribute Hiding Factor, Variable Count, Live Variables.

(iv) Software agent adaptation level (adaptation

performance): The adaptation metric considers facilities of

agent changing in order to react on new conditions in the

environment. It determines the stability and complexity of the

agent implementation. More complex algorithm is needed for

the agent to adapt to different environment conditions. It could

be measured by the time the agent survived and active in the

system.

(v) Software agent negotiation level (negotiation

performance): The measuring is directed on the evaluation of

the facilities like the agent intentions, conflict resolution, and

realized commitments for successful negotiations. It

determines the success of an agent activity relating to

common tasks. It can be measured only during runtime.

International Journal of Engineering Science Invention Research & Development; Vol. I Issue II August 2014

www.ijesird.com e-ISSN: 2349-6185

 Minakshi Sharma and Sapna

 ijesird, Vol. I (II) August 2014/ 49

(vi)Software agent collaboration level (collaboration

performance): It is oriented to the agent facility to work

together with other agents. A high collaboration of an agent

classifies his roles in the given tasks. These are Coupling

Between Objects, Class Coupling.

(vii) Software agent coordination level (coordination

performance): It considers the agent facility of managing any

agent tasks. A high level determines the role of the agent in an

administration hierarchy. Some agent may have a lower

coordination level than the other; it has to depend on the

nature of the agent type.

(viii) Software agent cooperation level (cooperation

performance) AI: It considers the volume and efficiency of

an agent relating to a common task. It determines the

effectiveness of common tasks realizations. We could count

the average number of messages that are exchange during

runtime before the task can be done.

(ix) Software agent self-reproduction level

(reproduction performance): The number of destroyed

agents related to repaired agents is counted. It determines the

stability of a software agent itself. (Including error handling

facilities) It could be measured only at run-time.

(x) Software agent performance level (operation

performance): It considers the task related performance of an

agent. A high agent performance is related to all kinds of

agent activities. It could be measured only at run-time. It

measures all agent aspect and threshold must be set before this

summary metrics can be computed and consolidated from the

various agent metrics.

(xi) Software agent mobility level (mobility

performance): This aspect considers the efficiency relating to

the agent movement. It considers the efficiency relating to the

agent movement and includes The time of creating and

launching messenger agents (mobile agents with minimal

content), The time to create and post messages, The size of

the message agents and messages, The time of agent taken for

travelling along different nodes before returning to its host,

with minimal content and interactions with the nodes and The

synchronization time to exchange a message between two

hosts.

(xii) Software agent specialization level (suitability

performance): The metric consider the degree of

specialization and the degree of redundancy of an agent. A

high specialization can lead to high performance. The metric

is Weighted Methods per Class.

(xiii) Software agent competition level (competition

performance) AI: Opposite of cooperation level. It considers

the determination and rights of the agent to say no to request

from other agent that may detrimental to its goals or tasks. We

count the number of request rejected by the agent during

runtime.

System working level:

(i) Agent system communication level (advising

performance): It counts the number of ACLs between the

different kinds of software agents and their different roles and

actions. It characterizes the intensity of the conversations and

describes the agent collaboration.

(ii) Agent system interaction level (team

performance): It considers the average types of interactions

relating to the agents and their roles in the environment of the

agent based system. Many interactions are based on a high

cooperation

(iii) Agent system knowledge level (knowledge

performance): It measures the results of agent learning for

agent-based system based on the different kinds of agents (as

tropistic and hysteretic agents). This aspect determines the

knowledge-based foundation of the agent-based system.

(iv) Agent system living level (life performance): This

metric is based on the agent adaptation which keeps the

adaptation level of the whole agent-based system. It based on

the adaptability of the agents and characterizes the system

maintenance effort.

(v) Agent system conflict management level (conflict

solution performance): The system success is based on the

agent negotiation and considering the relations between the

different kinds of a fair play in the realization of the system

tasks. A high conflict management level leads to high system

stability.

(vi) Agent system community level (community

performance): It considers the level of different agent

communities based on the agent collaboration. A high

community level is caused on collaboration for different

classes of system application.

(vi) Agent system management level (management

performance): This system metric is based on the agent

coordination level related to the whole agent system structure.

An efficient management determines a good agent

organization level.

(vii) Agent system application level (application

performance): This metric is related to the application area

and the different agent roles in their cooperation. It is based on

effective task-oriented agent cooperation.

International Journal of Engineering Science Invention Research & Development; Vol. I Issue II August 2014

www.ijesird.com e-ISSN: 2349-6185

 Minakshi Sharma and Sapna

 ijesird, Vol. I (II) August 2014/ 50

(viii) Agent system stability level (stability

performance): The stability measure is based on the agent

self-reproduction. A high stability level includes the agent

self-reproduction and other system error handling facilities.

(ix) Agent system performance level (processing

performance): The handling with object to realize special

tasks through the different agents is considered. This level

includes the agent performance and the performance of the

environment.

(x) Agent system flexibility level (flexibility performance):

The mobility behavior of all agents is considered here.

(xi) Agent system organization level (organization

performance): The different agent’s roles are considered.

This level leads to an efficient distribution of the agent roles

and their administration.

V. CONCLUSION AND FUTURE WORK

 We have presented an overview about software metrics,

i.e. traditional, object oriented and agent oriented metrics

suggested by various papers. As per requirement of time

different methodologies are evolved and for each

methodology new set of metrics are suggested and accepted

accordingly. A comprehensive and complete agent metrics

measuring suite is still yet to be established. We have applied

some of the existing above mentioned Traditional and Object

Oriented metrics in agents because there are much similarity

between agents and the other programming paradigm

software, especially object-oriented software. There are some

special characteristics of AOSE which are not by the available

metrics; we have to derive new metrics to measure these

agents’ behaviours. It is unquestionable that more trial and

time have to be spend in determine the usefulness and

efficiency of these new metrics.

REFERENCES

[1] L. Pouchard, “Metrics for Intelligence: the Perspective from

Software Agents” (2001)in NIST SPECIAL PUBLICATIONS
Performance Metrics for Intelligent Systems Workshop, P; 123-

126 .

[2] Bimlesh Wadhwa, Koh shin Jang and Teo Ee Nam, “Object and
Agent Metric Approach”(2003).

[3] Cem Kaner, Senior Member, IEEE, and Walter P. Bond,”
Software Engineering Metrics: What Do They Measure and How

Do We Know?”,in 10th International Conference on Software

Metrics, p.1-12, 2004.

[4] Dr. Linda H. Rosenberg, Lawrence E. Hyatt, “Software Quality

Metrics for Object-Oriented Environments”, (1994).

[5] R. Chidamber and Chris F. Kemerer. “A Metrics Suite for Object
Oriented Design”, (1994).in Software Engineering,IEEE

Transaction on Vol.20 ,Issue 6,paper 476-493, june1994.

[6] F. Brito e Abreu “The MOOD Metrics Set” Proc. ECOOP’95
Workshop on Metrics, (1995).

[7] Nicholas R. Jennings, “Agent-Oriented Software Engineering” ,

(2000)in IEA/AIE ’99 Proceeding of 12th international conference
on industrial and engineering applications of artificial intelligence

and expert systems:multiple approaches to intelligent systems
,Springer-Verlag New York,Inc.Secaucus,NJ,USA1999 ISBN:3-

54066076-3.

[8] M. D. Dikaiakos, and G. Samaras, "Performance Evaluation of
Mobile Agents: Issues and Approaches", In Dumke,

Rautenstrauch, Schmietendorf and Scholz (eds.), Performance

Engineering. State ofthe Art and Current Trends, Lecture Notes in
Computer Science Series, State ofthe Art Survey, Vol. 2047,

Springer, May 2001, p. 148-166.

[9] L. Cernuzzi & G. Rossi, “On the Evaluation of Agent Oriented
Modeling” (2002) in Proceedings of Agent Oriented Methodology

Workshop, Seattle paper 20/02/11 Vol 29, p106.

[10] C. Wille, R. Dumke and S. Stojanov, “Performance Engineering
in Agent-based Systems Concepts, Modeling and Examples” in

IWSM’01 August 28-29,(2001),paper ,p 109.

[11] R. Dumke, R.Koeppe and C. Wille,”Software Agent Measurement
and Self-Measuring Agent Based System”, Fakultat fur

Informatik,Otto-von-Guericke-Universitat,Magdeburg,2000,paper

Preprint No.
[12] Cornelius Wille, Nick Brehmer, Reiner R. dumke, “Software

measurement of Agent Oriented System”, (2001)

